Tutorial 6 for MATH 2020A (2024 Fall) Please check the updated tutorial 5 notes for an important correction.

1. Give a formula $\mathbf{F}(x,y) = M(x,y)\mathbf{i} + N(x,y)\mathbf{j}$ for the vector field \mathbf{F} defined in the xy-plane except the origin such that

(a) $\mathbf{F}(x, y)$ points toward the origin with magnitude inversely proportional to the square of the distance from (x, y) to the origin.

(b) $\mathbf{F}(x, y)$ is a unit vector pointing toward the origin.

Solution: (a)
$$F(x, y) = \left(\frac{-x}{(x^2+y^2)^{\frac{3}{2}}}, \frac{-y}{(x^2+y^2)^{\frac{3}{2}}}\right)$$

(b) $F(x, y) = \left(\frac{-x}{(x^2+y^2)^{\frac{1}{2}}}, \frac{-y}{(x^2+y^2)^{\frac{1}{2}}}\right)$

2. Let C be the space curve $\mathbf{r}(t) = t\mathbf{i} - \mathbf{j} + t^2\mathbf{k}$, $0 \le t \le 1$, evaluate the following integrals: (a) $\int_C (x+y-z) \, \mathrm{d}x$; (b) $\int_C (x+y-z) \, \mathrm{d}y$; (c) $\int_C (x+y-z) \, \mathrm{d}z$.

Solution: (a) $\frac{-5}{6}$; (b)0; (c) $\frac{-5}{6}$.

- 3. Let $C_1 : \mathbf{r}(t) = t\mathbf{i} + 2t\mathbf{j}, 0 \le t \le 2$ and $C_2 : \mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j}, 0 \le t \le 2$ be two plane curves.
 - (a) Draw C_1 and C_2 in the xy-plane.
 - (b) Find the flow of the vector field $\mathbf{F}(x, y) = y^2 \mathbf{i} + 2xy \mathbf{j}$ along C_1 and C_2 .

Solution: along C_1 : 32; along C_2 : 32. (Not a coincidence, note $\mathbf{F} = \nabla(xy^2)$, a conservative vector field!)

- 4. Suppose that f(t) is a differentiable and positive function for $a \le t \le b$. Let C be the path $\mathbf{r}(t) = t\mathbf{i} + f(t)\mathbf{j}, a \le t \le b$.
 - (a) Draw the path C in the xy-plane.

(b) Let the region $D \subset \mathbb{R}^2$ be the region bounded by the *x*-axis, the curve *C*, and the lines x = a, x = b, calculate $\iint_D 1 \, \mathrm{d}A$.

(c) Let the vector field **F** be given by $\mathbf{F}(x, y) = y\mathbf{i}$, show that

$$\int_C \mathbf{F} \cdot \, \mathrm{d}\mathbf{r} = \iint_D 1 \, \mathrm{d}A.$$

Solution: (b) $\int_{a}^{b} f(t) dt$; (c) $LHS = \int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} f(t) dt = RHS$. Question (c) is actually a special case of Green's theorem.